Test 2 Review Material
Below are resources to help you practice and prepare for the test 2 in this course.
Test 2 will cover the material covered in Chapter 4 of this textbook:
- basic derivative rules
- product, quotient and chain rules
- implicit derivatives
What’s not on this test:
- no interpretation style questions on this test
- no derivations
- no limit definitions
Test Instructions
Below are the general instructions for all tests
- You will get a chance to retake this. Your highest score counts toward your final grade.
- Follow the guidance for each part and show all work for full credit.
- Non-graphical calculators are allowed.
- One page (two sides) of handwritten (or font size 8) notes are allowed.
- The equation sheet from the textbook is included as part of the test pack (it doesn’t count as note pages)
Basic Rule Practice
1. \(f(x)=7\)
Math Hint
The derivative of any constant is always \(0\).Think of a flat line — its slope never changes.
Solution
\(f'(x)=0\)3. \(f(x)=3x^4\)
Math Hint
You have a constant multiplied by a power of \(x\).Apply the constant multiple rule with the power rule.
Solution
\(f'(x)=12x^3\)4. \(f(x)=5x^3-2x^2\)
Math Hint
Use the difference rule: differentiate each term individually.Solution
\(f'(x)=15x^2-4x\)5. \(f(x)=x^4+3x^2+5\)
Math Hint
Use the sum rule and note that the derivative of a constant is zero.Solution
\(f'(x)=4x^3+6x\)6. \(f(x)=9x^7-4x^3+2x\)
Math Hint
Each term loses one power when you apply the power rule.Solution
\(f'(x)=63x^6-12x^2+2\)7. \(f(x)=\dfrac{1}{2}x^2-3x+4\)
Math Hint
Differentiate each term.The first term is a parabola — its slope changes linearly with \(x\).
Solution
\(f'(x)=x-3\)Identity Rule Practice
2. \(f(x)=3e^x\)
Math Hint
Differentiate \(e^x\) from the table, then scale by the constant.Solution
\(f'(x)=3e^x\)3. \(f(x)=2e^{2x}\)
Math Hint
Use the identity for \(e^{g(x)}\) with \(g(x)=2x\).Solution
\(f'(x)=4e^{2x}\)4. \(f(x)=5e^{-x}\)
Math Hint
Use the identity for \(e^{g(x)}\) with \(g(x)=-x\).Solution
\(f'(x)=-5e^{-x}\)5. \(f(x)=e^{x^2}\)
Math Hint
Use the identity for \(e^{g(x)}\) with \(g(x)=x^2\).Solution
\(f'(x)=2x e^{x^2}\)6. \(f(x)=e^{3x+1}\)
Math Hint
Use the identity for \(e^{g(x)}\) with \(g(x)=3x+1\).Solution
\(f'(x)=3e^{3x+1}\)7. \(f(x)=10^x\)
Math Hint
Use the table entry for \(a^x\) with \(a=10\).Solution
\(f'(x)=10^x \ln(10)\)8. \(f(x)=2^{3x}\)
Math Hint
Use the identity for \(a^{g(x)}\) with \(a=2\), \(g(x)=3x\).Solution
\(f'(x)=3\cdot 2^{3x}\ln 2\)9. \(f(x)=5^x + 7^x\)
Math Hint
Apply the table entry for each exponential term separately.Solution
\(f'(x)=5^x\ln(5)+7^x\ln(7)\)10. \(f(x)=3^x - 2^x\)
Math Hint
Use the \(a^x\) identity on each term.Solution
\(f'(x)=3^x\ln(3)-2^x\ln(2)\)11. \(f(x)=\ln(x)\)
Math Hint
Use the table entry for \(\ln(x)\) (domain \(x>0\)).Solution
\(f'(x)=\dfrac{1}{x}\)12. \(f(x)=\ln(3x)\)
Math Hint
Use the identity for \(\ln(g(x))\) with \(g(x)=3x\) (domain \(x>0\)).Solution
\(f'(x)=\dfrac{1}{x}\)13. \(f(x)=\ln(x^2+1)\)
Math Hint
Use the identity for \(\ln(g(x))\) with \(g(x)=x^2+1\).Solution
\(f'(x)=\dfrac{2x}{x^2+1}\)14. \(f(x)=\ln(\sqrt{x})\)
Math Hint
Write \(\sqrt{x}=x^{1/2}\), then use the \(\ln(x)\) identity (domain \(x>0\)).Solution
\(f'(x)=\dfrac{1}{2x}\)15. \(f(x)=\log_2(x)\)
Math Hint
Use the table entry for \(\log_a(x)\) with \(a=2\) (domain \(x>0\)).Solution
\(f'(x)=\dfrac{1}{x\ln(2)}\)16. \(f(x)=\log_3(2x)\)
Math Hint
Use the identity for \(\log_a(g(x))\) with \(a=3\), \(g(x)=2x\) (domain \(x>0\)).Solution
\(f'(x)=\dfrac{1}{x\ln(3)}\)17. \(f(x)=\ln(e^x+1)\)
Math Hint
Use the identity for \(\ln(g(x))\) with \(g(x)=e^x+1\).Solution
\(f'(x)=\dfrac{e^x}{e^x+1}\)18. \(f(x)=e^{\ln(x)}\)
Math Hint
First simplify using \(e^{\ln(x)}=x\) (domain \(x>0\)).Solution
\(f'(x)=1\)Basic Trig Derivative Practice
3. \(f(x)=2\sin x\)
Math Hint
Multiply the derivative of \(\sin x\) by 2.Solution
\(f'(x)=2\cos x\)5. \(f(x)=\sin x+\cos x\)
Math Hint
Differentiate each term separately.Solution
\(f'(x)=\cos x-\sin x\)Product Rule Practice
1. \(f(x)=x\sin x\)
Math Hint
Use the product rule: \((uv)' = u'v + uv'\)Solution
\(f'(x)=\sin x + x\cos x\)3. \(f(x)=x^2 e^x\)
Math Hint
Apply product rule: \(u=x^2, v=e^x\)Solution
\(f'(x)=2x e^x + x^2 e^x = e^x(x^2 + 2x)\)4. \(f(x)=x^3\ln x\)
Math Hint
Use the product rule and derivative of \(\ln x\).Solution
\(f'(x)=3x^2\ln x + x^2\)5. \(f(x)=(x^2+1)\sin x\)
Math Hint
Differentiate both terms using product rule.Solution
\(f'(x)=2x\sin x + (x^2+1)\cos x\)Quotient Rule Practice
1. \(f(x)=\dfrac{1}{x}\)
Math Hint
Rewrite as \(x^{-1}\) or use the quotient rule.Solution
\(f'(x)=-\dfrac{1}{x^2}\)2. \(f(x)=\dfrac{x}{x^2+1}\)
Math Hint
Use \((u/v)'=\dfrac{u'v-uv'}{v^2}\)Solution
\(f'(x)=\dfrac{1-x^2}{(x^2+1)^2}\)3. \(f(x)=\dfrac{x^2}{x+1}\)
Math Hint
Apply quotient rule and simplify.Solution
\(f'(x)=\dfrac{x^2+2x}{(x+1)^2}\)4. \(f(x)=\dfrac{x^2+1}{x}\)
Math Hint
Simplify after differentiating.Solution
\(f'(x)=1-\dfrac{1}{x^2}\)5. \(f(x)=\dfrac{\sin x}{x}\)
Math Hint
Use quotient rule: \(u=\sin x, v=x\)Solution
\(f'(x)=\dfrac{x\cos x-\sin x}{x^2}\)6. \(f(x)=\dfrac{x}{\sin x}\)
Math Hint
Differentiate and simplify.Solution
\(f'(x)=\dfrac{\sin x - x\cos x}{\sin^2 x}\)7. \(f(x)=\dfrac{e^x}{x}\)
Math Hint
Combine exponential and quotient rules.Solution
\(f'(x)=\dfrac{e^x(x-1)}{x^2}\)8. \(f(x)=\dfrac{\ln x}{x}\)
Math Hint
Use quotient rule: \(u=\ln x, v=x\)Solution
\(f'(x)=\dfrac{1-\ln x}{x^2}\)Chain Rule Practice
5. \(f(x)=\sqrt{3x+2}\)
Math Hint
\(\sqrt{3x+2}=(3x+2)^{1/2}\)Solution
\(f'(x)=\dfrac{3}{2\sqrt{3x+2}}\)Implicit Derivative Practice
1. \(x^2 + y^2 = 25\)
Math Hint
Differentiate both sides with respect to \(x\).Solution
\(\dfrac{dy}{dx} = -\dfrac{x}{y}\)2. \(x^3 + y^3 = 9xy\)
Math Hint
Use the product rule on \(9xy\).Solution
\(\dfrac{dy}{dx} = \dfrac{9y - 3x^2}{3y^2 - 9x}\)3. \(x^2y + xy^2 = 6\)
Math Hint
Apply product rule to both terms.Solution
\(\dfrac{dy}{dx} = -\dfrac{2xy + y^2}{x^2 + 2xy}\)4. \(\sin y = x^2 + y\)
Math Hint
Differentiate \(\sin y\) using chain rule.Solution
\(\dfrac{dy}{dx} = \dfrac{2x}{\cos y - 1}\)5. \(e^y = x^2y + 3\)
Math Hint
Differentiate each term, use product rule for \(x^2y\).Solution
\(\dfrac{dy}{dx} = \dfrac{2xy}{e^y - x^2}\)6. \(\tan y = x\)
Math Hint
Differentiate \(\tan y\) with chain rule.Solution
\(\dfrac{dy}{dx}=\cos^2 y\)7. \(x^2 + xy + y^2 = 7\)
Math Hint
Use product rule on \(xy\) and chain rule on \(y^2\).Solution
\(\dfrac{dy}{dx} = -\dfrac{2x + y}{x + 2y}\)8. \(x^2 = \sin y\)
Math Hint
Differentiate both sides.Solution
\(\dfrac{dy}{dx}=\dfrac{2x}{\cos y}\)Test 2 — Practice Test I
How it works. Each problem has a locked, step-by-step solution.
To unlock, translate the given Australian slang into US English.
Type the translation as lowercase with no spaces/punctuation.
(Example: “gas station” → gasstation)
NOTE: The actual test will NOT include follow-ups — they are for review.
SOLUTIONS: may have errors - please reach out if something doesn’t seem right
🔒 Q1
Problem. Find \(f'(x)\) for \(F(x)=4x^3-5x^2+6x-2\).
Follow-up. At what \(x\)-value is the slope zero? What does that tell you about the graph?
Click to Unlock Solution — Password prompt: Translate arvo → US English
Step-by-Step Solution
6.12.0.1 Step 1 — Differentiate each term separately
\[ \frac{d}{dx}(4x^3)=4\cdot3x^{3-1}=12x^2 \] \[ \frac{d}{dx}(-5x^2)=-5\cdot2x^{2-1}=-10x \] \[ \frac{d}{dx}(6x)=6\cdot1x^{1-1}=6 \] \[ \frac{d}{dx}(-2)=0 \]
🔒 Q2
Problem. Differentiate \(F(x)=\dfrac{4e^{3x}}{x^2}=4e^{3x}x^{-2}\).
Follow-up. As \(x\) increases, does exponential growth or division by \(x^2\) dominate the slope?
Click to Unlock Solution — Password prompt: Translate sunnies → US English
Step-by-Step Solution
6.12.0.4 Step 1 — Recognize structure
Product of \(f(x)=4e^{3x}\) and \(g(x)=x^{-2}\).
Apply product rule: \(F'(x)=f'(x)g(x)+f(x)g'(x)\).
6.12.0.5 Step 2 — Differentiate each component
\[ f'(x)=4\cdot3e^{3x}=12e^{3x} \] \[ g'(x)=-2x^{-3} \]
🔒 Q3
Problem. Find \(F'(x)\) for \(F(x)=e^x + x e^2 + 4e\).
Click to Unlock Solution — Password prompt: Translate mozzie → US English
🔒 Q4
Problem. Find \(F'(x)\) for \(F(x)=x^2 e^{x^3}\).
Click to Unlock Solution — Password prompt: Translate servo → US English
🔒 Q5
Problem. Differentiate \(F(x)=\dfrac{\ln x}{x^3}\) for \(x>0\).
Click to Unlock Solution — Password prompt: Translate brekkie → US English
Step-by-Step Solution
6.12.0.13 Step 1 — Apply Quotient Rule
\[ F'(x)=\frac{f'(x)g(x)-f(x)g'(x)}{g(x)^2} \] Let \(f(x)=\ln x,\ g(x)=x^3\).
🔒 Q6
Problem. Find \(F'(x)\) for \(F(x)=\ln(2x+5)\).
Click to Unlock Solution — Password prompt: Translate thongs (footwear) → US English
🔒 Q7
Problem. Differentiate \(F(x)=e^{x^2}\sin x\).
Click to Unlock Solution — Password prompt: Translate ute → US English
🔒 Q8
Problem. Find \(F''(x)\) for \(F(x)=x^2\cos x\).
Click to Unlock Solution — Password prompt: Translate Macca’s → US English
🔒 Q9
Problem. Implicitly differentiate \(x^2+y^2=9\) and solve for \(\dfrac{dy}{dx}\).
Click to Unlock Solution — Password prompt: Translate sanga → US English
🔒 Q10
Problem. Implicitly differentiate \(e^y+xy=5\) and solve for \(\dfrac{dy}{dx}\).
Click to Unlock Solution — Password prompt: Translate brolly → US English
Frankenstein-Style Derivative Practice — Five Problems (Nested Step-by-Step Solutions)
Instructions. For each function, find \(f'(x)\) without simplifying.
Assume \(y=y(x)\) (implicit differentiation where needed).
Click to reveal Step 1, then Step 2, etc.
SOLUTIONS: may have errors - please reach out if something doesn’t seem right
Challenge Q1
\[ f_1(x)=\frac{(x^2+y)\,e^{xy}}{\,1+\sin x\,} \]
Step 1
\[ N(x)=(x^2+y)\,e^{xy},\qquad D(x)=1+\sin x. \] \[ f_1'(x)=\frac{D(x)\,N'(x)-N(x)\,D'(x)}{[D(x)]^2}. \]Step 2
\[ N(x)=A(x)\cdot B(x),\quad A(x)=x^2+y,\; A'(x)=2x+y',\; B(x)=e^{xy},\; B'(x)=e^{xy}(y+x\,y'). \] \[ N'(x)=(2x+y')\,e^{xy}+(x^2+y)\,e^{xy}(y+x\,y'). \]Step 3
\[ D(x)=1+\sin x\quad\Rightarrow\quad D'(x)=\cos x. \]Step 4
\[ \boxed{f_1'(x)= \frac{(1+\sin x)\Big[(2x+y')e^{xy}+(x^2+y)e^{xy}(y+x\,y')\Big] -(x^2+y)e^{xy}\cos x}{(1+\sin x)^2}}. \]Challenge Q2
\[ f_2(x)=\ln(x+y^2)\,\sqrt{\,1+x^2\,} \]
Step 1
\[ F(x)=\ln(x+y^2),\quad G(x)=\sqrt{\,1+x^2\,}. \] \[ f_2'(x)=F'(x)G(x)+F(x)G'(x). \]Step 2
\[ F'(x)=\frac{1}{x+y^2}(1+2y\,y'). \]Step 3
\[ G'(x)=\frac{x}{\sqrt{\,1+x^2\,}}. \]Step 4
\[ \boxed{f_2'(x)= \left[\frac{1+2y\,y'}{x+y^2}\right]\sqrt{\,1+x^2\,} +\ln(x+y^2)\left[\frac{x}{\sqrt{\,1+x^2\,}}\right]}. \]Challenge Q3
\[ f_3(x)=\frac{(x+y)\sin(x^2)}{\sqrt{\,1+y\,}} \]
Step 1
\[ N(x)=(x+y)\sin(x^2),\quad D(x)=\sqrt{\,1+y\,}. \] \[ f_3'(x)=\frac{D(x)N'(x)-N(x)D'(x)}{[D(x)]^2}. \]Step 2
\[ C(x)=x+y,\; C'(x)=1+y',\; S(x)=\sin(x^2),\; S'(x)=2x\cos(x^2). \] \[ N'(x)=(1+y')\sin(x^2)+(x+y)2x\cos(x^2). \]Step 3
\[ D'(x)=\frac{y'}{2\sqrt{\,1+y\,}}. \]Step 4
\[ \boxed{f_3'(x)= \frac{\sqrt{\,1+y\,}\Big[(1+y')\sin(x^2)+(x+y)2x\cos(x^2)\Big] -(x+y)\sin(x^2)\dfrac{y'}{2\sqrt{\,1+y\,}}}{(\sqrt{\,1+y\,})^2}}. \]Challenge Q4
\[ f_4(x)=e^{\sin(xy)}\cdot\frac{x^2+y}{\,1+xy\,} \]
Step 1
\[ P(x)=e^{\sin(xy)},\quad Q(x)=\frac{x^2+y}{1+xy}. \] \[ f_4'(x)=P'(x)Q(x)+P(x)Q'(x). \]Step 2
\[ P'(x)=e^{\sin(xy)}\cos(xy)(y+x\,y'). \]Step 3
\[ U(x)=x^2+y,\; U'(x)=2x+y',\; V(x)=1+xy,\; V'(x)=y+x\,y'. \] \[ Q'(x)=\frac{(2x+y')(1+xy)-(x^2+y)(y+x\,y')}{(1+xy)^2}. \]Step 4
\[ \boxed{f_4'(x)= e^{\sin(xy)}\cos(xy)(y+x\,y')\frac{x^2+y}{1+xy} +e^{\sin(xy)}\frac{(2x+y')(1+xy)-(x^2+y)(y+x\,y')}{(1+xy)^2}}. \]Challenge Q5
\[ f_5(x)=\sqrt{\,1+x^2y\,}\cdot\frac{\ln(x+y)}{\cos x} \]
Step 1
\[ A(x)=\sqrt{\,1+x^2y\,},\quad B(x)=\frac{\ln(x+y)}{\cos x}. \] \[ f_5'(x)=A'(x)B(x)+A(x)B'(x). \]Step 2
\[ A'(x)=\frac{2x\,y+x^2\,y'}{2\sqrt{\,1+x^2y\,}}. \]Step 3
\[ R(x)=\ln(x+y),\; R'(x)=\frac{1+y'}{x+y},\; S(x)=\cos x,\; S'(x)=-\sin x. \] \[ B'(x)=\frac{\frac{1+y'}{x+y}\cos x+\ln(x+y)\sin x}{\cos^2 x}. \]Step 4
\[ \boxed{f_5'(x)= \frac{2x\,y+x^2\,y'}{2\sqrt{\,1+x^2y\,}}\cdot\frac{\ln(x+y)}{\cos x} +\sqrt{\,1+x^2y\,}\left[\frac{\frac{1+y'}{x+y}\cos x+\ln(x+y)\sin x}{\cos^2 x}\right]}. \]Test 2 — Practice Test II
Instructions. Each problem has a click-to-reveal, step-by-step solution.
Assume \(y=y(x)\) when a problem uses implicit differentiation.
You do not need to simplify final derivatives unless stated.
SOLUTIONS: may have errors - please reach out if something doesn’t seem right
Q1
\[ F(x)=\frac{3}{5}x^{5}-4x^{1/2}+7. \]
Step-by-Step Solution
\[ \frac{d}{dx}\!\left(\tfrac{3}{5}x^{5}\right)=3x^{4},\qquad \frac{d}{dx}\!\left(-4x^{1/2}\right)=-2x^{-1/2},\qquad \frac{d}{dx}(7)=0. \] \[ \boxed{F'(x)=3x^{4}-2x^{-1/2}.} \]
Q2
\[ F(x)=(x^{2}+1)\ln x \quad (x>0) \]
Step-by-Step Solution
Product rule: \(f'(x)=2x,\ g'(x)=1/x.\) \[ F'(x)=f'g+fg' = 2x\ln x+(x^{2}+1)\frac1x = 2x\ln x+x+\frac1x. \] \[ \boxed{F'(x)=2x\ln x+x+\frac1x.} \]
Q3
\[ F(x)=\frac{e^{2x}}{1+x}. \]
Step-by-Step Solution
\(f'(x)=2e^{2x},\ g'(x)=1.\) \[ F'(x)=\frac{f'g-fg'}{g^{2}} =\frac{2e^{2x}(1+x)-e^{2x}}{(1+x)^{2}} =\frac{e^{2x}(1+2x)}{(1+x)^2}. \] \[ \boxed{F'(x)=\frac{e^{2x}(1+2x)}{(1+x)^2}.} \]
Q4
\[ F(x)=\sin\!\big(\ln(1+x^{2})\big). \]
Step-by-Step Solution
Chain rule:
Outer \(\sin(\cdot)\to\cos(\cdot)\cdot(\cdot)'\).
Inner \(h(x)=\ln(1+x^{2})\Rightarrow h'(x)=\frac{2x}{1+x^{2}}\).
\[
F'(x)=\cos\!\big(\ln(1+x^{2})\big)\cdot\frac{2x}{1+x^{2}}.
\]
\[
\boxed{F'(x)=\frac{2x}{1+x^{2}}\cos\!\big(\ln(1+x^{2})\big).}
\]
Q5
\[ F(x)=x\,e^{\cos x}. \]
Step-by-Step Solution
Product rule with \(f'(x)=1,\ g'(x)=e^{\cos x}(-\sin x)\): \[ F'(x)=f'g+fg'=e^{\cos x}+x\,e^{\cos x}(-\sin x)=e^{\cos x}(1-x\sin x). \] \[ \boxed{F'(x)=e^{\cos x}(1-x\sin x).} \]
Q6
\[ F(x)=\ln(1+x^{3}). \]
Step-by-Step Solution
Chain rule — outer \(\ln(\cdot)\), inner \(1+x^{3}\): \[ F'(x)=\frac{1}{1+x^{3}}\cdot(3x^{2})=\frac{3x^{2}}{1+x^{3}}. \] \[ \boxed{F'(x)=\frac{3x^{2}}{1+x^{3}}.} \]
Q7
\[ x\,e^{y}+y^{2}=1. \]
Step-by-Step Solution
Differentiate: \[ e^{y}+x\,e^{y}y'+2y\,y'=0. \] \[ y'(x\,e^{y}+2y)=-e^{y}. \] \[ \boxed{y'=-\frac{e^{y}}{x\,e^{y}+2y}.} \]
Q8
\[ \sin(xy)=x. \]
Step-by-Step Solution
Differentiate: \[ \cos(xy)(y+x\,y')=1. \] \[ x\cos(xy)y'=1-\cos(xy)y. \] \[ \boxed{y'=\frac{1-\cos(xy)y}{x\cos(xy)}.} \]
Q9
\[ F(x)=x\,e^{x}. \]
Step-by-Step Solution
First derivative: \[ F'(x)=e^{x}(1+x). \] Second derivative: \[ F''(x)=e^{x}(1+x)+e^{x}=e^{x}(x+2). \] \[ \boxed{F''(x)=e^{x}(x+2).} \]
Q10
\[ F(x)=\frac{\ln(1+x e^{x})}{\sqrt{1-x^{2}}},\quad |x|<1. \]
Step-by-Step Solution
\(f(x)=\ln(1+x e^{x})\Rightarrow f'(x)=\dfrac{e^{x}(1+x)}{1+x e^{x}}\).
\(g(x)=\sqrt{1-x^{2}}\Rightarrow g'(x)=-\dfrac{x}{\sqrt{1-x^{2}}}.\)
\[ F'(x)=\frac{f'g-fg'}{g^{2}} =\frac{\frac{e^{x}(1+x)}{1+x e^{x}}\sqrt{1-x^{2}}+\frac{x\ln(1+x e^{x})}{\sqrt{1-x^{2}}}}{1-x^{2}}. \] \[ \boxed{F'(x)= \frac{\frac{e^{x}(1+x)}{1+x e^{x}}\sqrt{1-x^{2}}+\frac{x\ln(1+x e^{x})}{\sqrt{1-x^{2}}}} {1-x^{2}}.} \]