Calculus I Equation Sheet
Basic Derivative Rules
| Rule | Function Form | Derivative Form |
|---|---|---|
| Constant | \(c\) | \(0\) |
| Power | \(x^n\) | \(n x^{n-1}\) |
| Constant Multiple | \(c \cdot f(x)\) | \(c \cdot f'(x)\) |
| Sum | \(f(x) + g(x)\) | \(f'(x) + g'(x)\) |
| Difference | \(f(x) - g(x)\) | \(f'(x) - g'(x)\) |
| Product | \(f(x)g(x)\) | \(f'(x)g(x) + f(x)g'(x)\) |
| Quotient | \(\dfrac{f(x)}{g(x)}\) | \(\dfrac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}\) |
| Chain | \(f(g(x))\) | \(f'(g(x)) \cdot g'(x)\) |
| Inverse | \(f^{-1}(x)\) | \(\dfrac{1}{f'(f^{-1}(x))}\) |
Trigonometric Derivatives
| Function | Derivative |
|---|---|
| \(\sin x\) | \(\cos x\) |
| \(\cos x\) | \(-\sin x\) |
| \(\tan x\) | \(\sec^2 x\) |
| \(\sec x\) | \(\sec x \tan x\) |
| \(\csc x\) | \(-\csc x \cot x\) |
| \(\cot x\) | \(-\csc^2 x\) |
Exponential & Logarithmic Derivatives
| Function | Derivative |
|---|---|
| \(a^x\) | \(a^x \ln(a)\) |
| \(e^x\) | \(e^x\) |
| \(a^{g(x)}\) | \(g'(x)\, a^{g(x)} \ln(a)\) |
| \(e^{g(x)}\) | \(g'(x)\, e^{g(x)}\) |
| \(\log_a(x)\) | \(\dfrac{1}{x \ln(a)}\) |
| \(\ln(x)\) | \(\dfrac{1}{x}\) |
| \(\log_a(g(x))\) | \(\dfrac{g'(x)}{g(x)\ln(a)}\) |
| \(\ln(g(x))\) | \(\dfrac{g'(x)}{g(x)}\) |
Average Rate of Change
\[ AV_[a,b] = \frac{f(b) - f(a)}{b-a} \]
Limit Definition of a Derivative
\[ f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} \]
General Functions & Forms
Linear Forms:
General: \(f(x) = ax+b\),
Point-slope: \(y-y_1 = m(x-x_1)\),
Slope-intercept: \(y=mx+b\)Quadratic Forms:
General: \(ax^2+bx+c\),
Vertex: \(a(x-h)^2+k\),
Roots: \(\dfrac{-b \pm \sqrt{b^2-4ac}}{2a}\)Polynomial (nth-order):
\(f(x) = a_nx^n + \dots + a_1x + a_0\)Transformations:
\(g(x) = a f(x-b) + c\)Sinusoid:
\(f(x) = a \sin(kx+b)+c,\ \ T=\dfrac{2\pi}{k}\)
Applications
- Slope of tangent line: \(m = f'(a)\)
- Tangent line equation: \(y = f'(a)(x-a)+f(a)\)
- Linear approximation: \(L(x)=f(a)+f'(a)(x-a)\)
- Related rates: \(\dfrac{dy}{dt} = \dfrac{dy}{dx}\cdot\dfrac{dx}{dt}\)
- Concavity: \(f''>0 \Rightarrow\) concave up, \(f''<0 \Rightarrow\) concave down
- Extrema: solve \(f'(x)=0\), check sign of \(f'\) or use \(f''\)